Skip to main content

MinAbsSumOfTwo ::: Find the minimal absolute value of a sum of two elements.

Task description
Let A be a non-empty zero-indexed array consisting of N integers.
The abs sum of two for a pair of indices (P, Q) is the absolute value |A[P] + A[Q]|, for 0 ≤ P ≤ Q < N.
For example, the following array A:
A[0] = 1 A[1] = 4 A[2] = -3has pairs of indices (0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2).
The abs sum of two for the pair (0, 0) is A[0] + A[0] = |1 + 1| = 2.
The abs sum of two for the pair (0, 1) is A[0] + A[1] = |1 + 4| = 5.
The abs sum of two for the pair (0, 2) is A[0] + A[2] = |1 + (−3)| = 2.
The abs sum of two for the pair (1, 1) is A[1] + A[1] = |4 + 4| = 8.
The abs sum of two for the pair (1, 2) is A[1] + A[2] = |4 + (−3)| = 1.
The abs sum of two for the pair (2, 2) is A[2] + A[2] = |(−3) + (−3)| = 6.
Write a function:
class Solution { public int solution(int[] A); }
that, given a non-empty zero-indexed array A consisting of N integers, returns the minimal abs sum of two for any pair of indices in this array.
For example, given the following array A:
A[0] = 1 A[1] = 4 A[2] = -3the function should return 1, as explained above.
Given array A:
A[0] = -8 A[1] = 4 A[2] = 5 A[3] =-10 A[4] = 3the function should return |(−8) + 5| = 3.
Assume that:
  • N is an integer within the range [1..100,000];
  • each element of array A is an integer within the range [−1,000,000,000..1,000,000,000].
Complexity:
  • expected worst-case time complexity is O(N*log(N));
  • expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments).
Elements of input arrays can be modified.

class Solution { public int solution(int[] A) { // write your code in Java SE 8 int len=A.length; int min=0; int sum=0; for(int i=0;i<len;i++){ for(int j=i;j<len;j++){ sum=Math.abs(A[i]+A[j]); if(i==0&&j==0) min=sum; else{ if(min>sum) min=sum; } } } return min; } }

Analysis summary
The following issues have been detected: timeout errors.
Analysis

Detected time complexity:
O(N * N)

Comments

Popular posts from this blog

Java Interface

Problem Statement A Java interface can only contain method signatures and fields. Interface can be used to achieve polymorphism. In this problem you will practice your knowledge on interfaces. You are given an interface   AdvancedArithmetic   which contains a method signature   public abstract int divisorSum(int n) . You need to write a class called MyCalculator which implements the interface. divisorSum   function just takes an integer as input and return the sum of all its divisors. For example divisors of 6 are 1,2,3 and 6, so   divisorSum   should return 12. Value of n will be at most 1000. Read the partially completed code in the editor and complete it. You just need to write the MyCalculator class only.   Your class shouldn't be public. Sample Input 6 Sample Output I implemented: AdvancedArithmetic 12 Explanation Divisors of 6 are 1,2,3 and 6. 1+2+3+6=12. import java.util.*; interface AdvancedArithmetic{   public abstract int divisorSum(int n

Problem: Java Exception Handling

Problem Statement Create a class myCalculator which consists of a single method power(int,int). This method takes two integers,   n   and   p , as parameters and finds   n p . If either   n   or   p   is negative, then the method must throw an exception which says "n and p should be non-negative". Please read the partially completed code in the editor and complete it. Your code mustn't be public. No need to worry about constraints, there won't be any overflow if your code is correct. Sample Input 3 5 2 4 -1 -2 -1 3 Sample Output 243 16 java.lang.Exception: n and p should be non-negative java.lang.Exception: n and p should be non-negative import  java.util.*; class myCalculator{     int power(int n,int p) throws java.lang.Exception{         int power=1;         while(p>0){             power=power*(n);             p--;         }                 if(n==0) power=0;                if(n<0 | p<0){       

Google Cloud Shell | Delete instance