Skip to main content

Play febnocci and factorial on BigNumbers ...

BigNumberOperations.java
---------------------------------------------

package com.blogspot.developerssbrain;

import java.math.BigDecimal;

public class BigNumberOperations {

    static BigDecimal factorial(int n){
        BigDecimal fact=new BigDecimal("1");
        while(n>0){
            fact=fact.multiply(new BigDecimal(n));
            n--;
        }
        return fact;
    }
   
    static BigDecimal febnocci(int n){
        BigDecimal i=new BigDecimal("1");
        BigDecimal j=new BigDecimal("1");
        while(n-2>0){
            j=j.add(i);
            i=j.subtract(i);
            n--;
        }
        return j;
    }
   
    public static void main(String[] args) {
        //Factorial of 5
        System.out.println("Factorial of 5");
        System.out.println(factorial(5));
        System.out.println();
       
        //Factorial of 300
        System.out.println("Factorial of 300!!!");
        System.out.println(factorial(300));   
        System.out.println();
       
        //10th febnocci number
        System.out.println("10th febnocci number");
        System.out.println(febnocci(10));
        System.out.println();
       
        //Febnocci of 400
        System.out.println("1000th febnocci number");
        System.out.println(febnocci(1000));
        System.out.println();
    }

}

Output:
----------------------------
Factorial of 5
120

Factorial of 300!!!
306057512216440636035370461297268629388588804173576999416776741259476533176716867465515291422477573349939147888701726368864263907759003154226842927906974559841225476930271954604008012215776252176854255965356903506788725264321896264299365204576448830388909753943489625436053225980776521270822437639449120128678675368305712293681943649956460498166450227716500185176546469340112226034729724066333258583506870150169794168850353752137554910289126407157154830282284937952636580145235233156936482233436799254594095276820608062232812387383880817049600000000000000000000000000000000000000000000000000000000000000000000000000

10th febnocci number
55

1000th febnocci number
43466557686937456435688527675040625802564660517371780402481729089536555417949051890403879840079255169295922593080322634775209689623239873322471161642996440906533187938298969649928516003704476137795166849228875





Comments

Post a Comment

Popular posts from this blog

Java Interface

Problem Statement A Java interface can only contain method signatures and fields. Interface can be used to achieve polymorphism. In this problem you will practice your knowledge on interfaces. You are given an interface   AdvancedArithmetic   which contains a method signature   public abstract int divisorSum(int n) . You need to write a class called MyCalculator which implements the interface. divisorSum   function just takes an integer as input and return the sum of all its divisors. For example divisors of 6 are 1,2,3 and 6, so   divisorSum   should return 12. Value of n will be at most 1000. Read the partially completed code in the editor and complete it. You just need to write the MyCalculator class only.   Your class shouldn't be public. Sample Input 6 Sample Output I implemented: AdvancedArithmetic 12 Explanation Divisors of 6 are 1,2,3 and 6. 1+2+3+6=12. import java.util.*; interface AdvancedArithmetic{   p...

change directory (cd) function for an abstract file system ( Java Implementation )

Write a function that provides change directory (cd) function for an abstract file system. Notes: Root path is '/'. Path separator is '/'. Parent directory is addressable as "..". Directory names consist only of English alphabet letters (A-Z and a-z). For example, new Path("/a/b/c/d").cd("../x").getPath() should return "/a/b/c/x". Note: The evaluation environment uses '\' as the path separator. public class Path {     private String path;     public Path(String path) {         this.path = path;     }     public String getPath() {         return path;     }     public Path cd(String newPath) {         //throw new UnsupportedOperationException("Waiting to be implemented."); String[] newP=newPath.split("/");     String[] oldP=path.split("/");     int lnCount=0;     for(String str:newP){     if(st...

COMPUTE number of inversion in an array - ArrayInversionCount

Task description A zero-indexed array A consisting of N integers is given. An  inversion is a pair of indexes (P, Q) such that P < Q and A[Q] < A[P]. Write a function: class Solution { public int solution(int[] A); } that COMPUTES  the number of inversions in A, or returns −1 if it exceeds 1,000,000,000. Assume that: N is an integer within the range [ 0 .. 100,000 ]; each element of array A is an integer within the range [ −2,147,483,648 .. 2,147,483,647 ]. For example, in the following array: A[0] = -1 A[1] = 6 A[2] = 3 A[3] = 4 A[4] = 7 A[5] = 4 there are four inversions: (1,2) (1,3) (1,5) (4,5) so the function should return 4. Complexity: expected worst-case time complexity is O(N*log(N)); expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments). Elements of input arrays can be modified. // you can also use imports, for example: // import java.util.*; // you can...